

Exam of course MICRO 372: Advanced Mechanisms for Extreme Environments

F. Cosandier – V05 – 08.05.2025 (prior versions of this document are discarded)

Duration: 3 hours

Date: Thursday 26.06.2025

Schedule: 9:15 a.m. to 12:15 p.m.

Room: SG1 & SG0213

Authorized material:

- **Paper and pens**
- **Calculator** (no smartphone nor computer)
- **“Flex” form** (FLEX_FORMULAIRE.pdf from Moodle)
- **A single-sided form** is provided (approximately 10 days before the exam), personal annotations (handwritten or “iPad style”) are permitted on the blank reverse side, as well as on the front side
- Additional formulas needed for the exam can be provided within the exam document

Exam format:

- Multiple choice questions (25%)
- Problems to solve, calculations (75%)
- **No open questions**

Subjects excluded from the exam:

- Homework lectures
- COMSOL Tutorials
- Yellow topics in the subjects list

Subjects included in the exam:

Green topics are considered as **general knowledge for MCQ**.

Blue topics are considered as **knowledge needed to solve problems and to answer MCQ**.

Yellow topics are **excluded**.

1. Introduction
2. Application fields and examples
3. Operating environments and associated constraints
 - o Vacuum environment
 - o Outgassing
 - o Cryogenic environment
 - o High temperature environment
 - o Radiative environment
 - o Dusty environment
 - o Sterile environment

- In vivo environment
- Micro-gravity environment
- Vibrations
- Micro-vibrations
- Magnetic environment

4. Advanced mechanisms design

- Flexure building blocks
- Stiffness calculation
- Kinematic analysis
- Geometric models
- Optimization
- Fatigue

5. Advanced mechanisms analysis

- FEA theory
- Meshing
- Constraints and loads
- Static and transient FEA
- Modal and frequency FEA
- Buckling FEA
- Multibody Dynamic Analysis
- Environmental vibration analysis (Miles)
- Topology optimization
- Multiphysics
- Numerical ordinary differential equation (ODE) resolution of dynamical system

6. Mechanisms dynamic aspects

- Vibrational mechanics theory
- Damping
- Lagrangian mechanics
- Balancing

7. System aspects

- Sensors
- Actuators

8. (Ultra-) High precision

- Calibration procedure
- Tolerances calculation
- Kinematic couplings

9. Manufacturing, assembly and integration of high precision mechanisms

- Manufacturing techniques
- Post-treatments
- Assembly

10. Characterization and testing

11. Synthesis examples

- Clarifications